Demonstrating the Applicability of PAINT to Computationally Expensive Real-life Multiobjective Optimization

نویسندگان

  • Markus Hartikainen
  • Vesa Ojalehto
چکیده

We demonstrate the applicability of a new PAINT method to speed up iterations of interactive methods in multiobjective optimization. As our test case, we solve a computationally expensive non-linear, five-objective problem of designing and operating a wastewater treatment plant. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpensive mixed integer linear surrogate problem for the original problem. We develop an IND-NIMBUS R © PAINT module to combine the interactive NIMBUS method and the PAINT method and to find a preferred solution to the original problem. With the PAINT method, the solution process with the NIMBUS method take a comparatively short time even though the original problem is computationally expensive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAINT: Pareto front interpolation for nonlinear multiobjective optimization

A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem...

متن کامل

PAINT-SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization

We introduce a novel approximation method for multiobjective optimization problems called PAINT–SiCon. The method can construct consistent parametric representations of Pareto sets, especially for nonconvex problems, by interpolating between nondominated solutions of a given sampling both in the decision and objective space. The proposed method is especially advantageous in computationally expe...

متن کامل

Multiobjective Optimization Using Surrogates

Until recently, optimization was regarded as a discipline of rather theoretical interest, with limited real-life applicability due to the computational or experimental expense involved. Multiobjective optimization was considered as a utopia even in academic studies due to the multiplication of this expense. This paper discusses the idea of using surrogate models for multiobjective optimization....

متن کامل

Multi-objective evolutionary algorithms for financial portfolio design

Efficient portfolio design is a principal challenge in modern computational finance. Optimization based on Markowitz two-objective mean-variance approach is computationally expensive for real financial world. Practical portfolio design introduces further complexity as it requires the optimization of multiple return and risk measures. Some of these measures are nonlinear and nonconvex. The probl...

متن کامل

A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1109.3411  شماره 

صفحات  -

تاریخ انتشار 2011